
Master in Computer Science

Course : TER

Generation of sequences controlled by their
“complexity”

Author:
Fissore Davide

Supervisor:
Jean-Charles Régin

Abstract

We want to generate sequences of musical “chords” (a chord is a set of notes basically) with
some known constraints (allDiff, etc.) as well as control on the complexity of the sequence. This
complexity in turn is defined by a dynamic programming algorithm working on the instantiated
sequence, which makes the whole problem difficult.

Fall 2022

CONTENTS

Contents

1 Problem description 1

2 Definitions and notations 1

3 Minimize Switches in Paths 1
3.1 Procedure . 1
3.2 Proof . 1
3.3 Time Complexity . 2
3.4 An example run . 2
3.5 Exstention on cycles . 2

4 General Graph 2
4.1 Preliminaries . 3
4.2 Matrix Method . 3
4.3 MDD strategy . 3

5 Simple Paths 3
5.1 Preliminaries . 3

6 NValue Constraint 3

7 Conclusion 3

8 References 3

A Algorithms 4
A.1 Minimize color switch in a path . 4

1

1 Problem description

2 Definitions and notations

In the following sections G = (V,A) is a directed graph where V = (v1, . . . , vn) is the set of its vertices
and A = (a1, . . . , am) is the set of its arcs. n and m represents the cardinality of rispectively V and A.
An arc ai ∈ A is a pair (vi, vj) ∈ V 2 saying that ai goes from vi to vj . This arc is different from another
aj = (vj , vi) ∈ A.
F is the coloring function taking an arc a and returning the set of colors C associated to it. By abuse of
notation we say that F (a) = F (vi, vj) if a = (vi, vj). R : A→ N is a valid affectation, that is R(e) = c if
and only if c ∈ F (e). For simplicity, if S = (a1, . . . , ak) is a list of k arcs, then F (S) = (C1, . . . ,Ck) and
R(S) = (c1, . . . , ck).
Given a path P of length k and its corresponding affectations R(P), its weight is returned by the cost
function w(R(P)) defined as follows:

w(R(P)) =

k−1∑
i=1

(ci ̸= ci+1)

wOPT (R(P)) is the minimal weight of a path among all the possible affectation H(P), this affectation
is said to be optimal ROPT (P). Finally, we say that a shortest path from vi to vj in a graph G is a path
P starting in vi and ending in vj whose optimal affectation ROPT is the minimal among all the other
possible paths in G.

3 Minimize Switches in Paths

The goal of this section is to provide a greedy algorithm able to compute an optimal affectation H of a
given path P . The obtained result, will then be extended to general graphs using the XXX matrix.

3.1 Procedure

This problem can be solved through a greedy strategy: taking a path P and a coloring function F , we
must delay a color switch as much as possible. At the end we will have selected the biggest l ∈ [1, k]
such that the edges (e1, . . . , el) have at least one color in common. We repeat this procedure from the
edge el+1 until reaching the end of our path. An implementation of this algorithm can be found in
Algorithm 1.

3.2 Proof

Let R = (c1, . . . , ck) be a solution returned by our algorithm, we can easily prove by induction on the
length of the path that the solution is optimal.

For k = 1 we have w(R) = 0 by defintion of the weight function.

Let’s suppose that the solution R is an optimal one for every path of length at least k. We want to
prove that the algorithm is always valid for a path of length k + 1, we see that:

� if F (ek) ∩ F (ek+1) = ∅ then we are forced to do a color switch, for every affectation of the edge
R′ = ((c1, . . . , ck)). Since, by ipothesis, the affectation of the edges w(R′) is optimal, then it will
remain optimal for any affectation of the edge ek+1 and w(R) = w(R′) + 1.

� if F (ek) ∩ F (ek+1) ̸= ∅

– if ck ∈ F (ek+1) then the algorithm we give to ek+1 the same color of ek. This will not increase
the number of color switch which will remain optimal.

– if ck ∈ F (ek+1) then the algorithm will force a color switch even if it would have been possible
to give them the same color. Despite this, if we decide to give the same colors to ek and ek+1

then we are only anticipating a color switch, and in the end w(R) will remain optimal.

4. General Graph 2

3.3 Time Complexity

We can analyze the time complexity of this procedure from Referencesminpathalgo. We have two loops
of size k (the length of the path). Inside them we make intersection between sets of at most s colors,
then the intersection between two sets of that size will take O(s). Finally, the global time complexity
will be O(2 ∗ k ∗ s) = O(k ∗ s).

3.4 An example run

v1 v2 v3 v4 v5 v6 v7

a1 a2 a3 a4 a5 a6

Figure 1: A path example

Let’s take Figure 1, where P = (a1, . . . , a6) and F such that

F (P) = ({cyan, red, green},
{red, green, black},
{cyan, red},
{green},
{cyan, red, black},
{red, black})

The longest subpath of same color, starting from the vertex v1, is P1 = (a1, a2, a3) such that
R(a) = red for all a ∈ P1. Then R(e4) = green and R(a5) = R(a6) = black. This affectation
H = (red, red, red, green, black, black) has w(R) = 2 and is optimal.

3.5 Exstention on cycles

A cycle in a path whose starting node coincide with its last one. We see that the previous algorithm is
no more effective, since we have to keep into accout the potential color switch between the first and the
last edge of it. Despite this, the procedure proposed in Section 3.1, can be easily modified to provide an
optimal affectation on cycles. Let’s take the path of Figure 1 and imagine that nodes n1 and n7 coincide.
We now see that the affectation H of Section 3.4 is no more optimal: w(R) = 3, while the affectation
H ′ = (red, red, red, green, red, red) as a cost of 2. In order to take into account this situation, we assign
to the first P1 and the last Pl sub-path of edges with same colors a set of common colors. Finally if the
intersection of P1 and Pl is not empty, we will affect them to a color they share, otherwise, whatever
choice of color for P1 and Pl will not influence the final cost of the chosen affectation.

Concretely, take the example in Figure 1, then P1 = (a1, a2, a3) and Pl = (a5, a6). Let C1 =⋂
a∈P1

R(a) and C2 =
⋂

a∈P2
R(a). We know that both C1 and C2 are non-empty. Then since C1 ∩C2 =

{red} then we can set red to all arcs in P1 and P2 reducing therefore the overall switch number.

4 General Graph

In this section we provide a strategy to compute paths with a fixed number of edges. This strategy

3 4.1 Preliminaries

4.1 Preliminaries

4.2 Matrix Method

4.3 MDD strategy

5 Simple Paths

5.1 Preliminaries

6 NValue Constraint

7 Conclusion

8 References

[1] Mostafa Haghir Chehreghani. Effectively Counting s-t Simple Paths in Directed Graphs. Report.
Teheran Polytechnic, 2022.

[2] Generalized Floyd–Warshall algorithm. 2022. url: https://fr.wikipedia.org/wiki/Probl%C3%
A8me_de_plus_court_chemin#Algorithme_de_Floyd-Warshall_g%C3%A9n%C3%A9ralis%C3%A9.

https://fr.wikipedia.org/wiki/Probl%C3%A8me_de_plus_court_chemin#Algorithme_de_Floyd-Warshall_g%C3%A9n%C3%A9ralis%C3%A9
https://fr.wikipedia.org/wiki/Probl%C3%A8me_de_plus_court_chemin#Algorithme_de_Floyd-Warshall_g%C3%A9n%C3%A9ralis%C3%A9

A. Algorithms 4

A Algorithms

A.1 Minimize color switch in a path

Algorithm 1: Minimize switches in path

Input: P = (a1, . . . , ak), F := a path and the color function
Output: H := a path affectation minimizing the color switches

1 colSet← [F (ai) for i ∈ [1..k]];
2 for i← 2 to k do
3 inter ← colSet[i− 1] ∩ colSet[i] ; // Delay a color switch

4 if inter ̸= ∅ then
5 colSet[i]← inter;
6 end

7 end
8 H ← [colSet[i].choose() for i ∈ [1..k]];
9 for i = k − 2 downto 1 do

10 if H[i+ 1] ∈ colSet[i] ∧H[i] ̸= H[i+ 1] then
11 H[i]← H[i+ 1];

; // if possible the R(ei) equals R(ei+1)

12 end

13 end
14 return H;

	Problem description
	Definitions and notations
	Minimize Switches in Paths
	Procedure
	Proof
	Time Complexity
	An example run
	Exstention on cycles

	General Graph
	Preliminaries
	Matrix Method
	MDD strategy

	Simple Paths
	Preliminaries

	NValue Constraint
	Conclusion
	References
	Algorithms
	Minimize color switch in a path

