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Abstract

We want to generate sequences of musical “chords” (a chord is a set of notes basically) with
some known constraints (allDiff, etc.) as well as control on the complexity of the sequence. This
complexity in turn is defined by a dynamic programming algorithm working on the instantiated
sequence, which makes the whole problem difficult.
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1 Problem description

2 Definitions and notations

In the following sections G = (V, A) is a directed graph where V' = (v1,...,v,) is the set of its vertices
and A = (ai,...,a,,) is the set of its arcs. n and m represents the cardinality of rispectively V' and A.
An arc a; € A is a pair (v;,v;) € V? saying that a; goes from v; to v;. This arc is different from another
a; = (’Uj,’Ui) € A

F is the coloring function taking an arc a and returning the set of colors C associated to it. By abuse of
notation we say that F'(a) = F'(v;,v;) if a = (v;,v;). R: A — Nis a valid affectation, that is R(e) = ¢ if
and only if ¢ € F(e). For simplicity, if S = (a1,...,ax) is a list of k arcs, then F(S) = (Cyq,...,Cy) and
R(S) = (Cl, ey Ck).

Given a path P of length k and its corresponding affectations R(P), its weight is returned by the cost
function w(R(P)) defined as follows:

k—1

w(R(P)) = Z(Cl # Cit1)

i=1

wopr(R(P)) is the minimal weight of a path among all the possible affectation H(P), this affectation
is said to be optimal Ropr(P). Finally, we say that a shortest path from v; to v; in a graph G is a path
P starting in v; and ending in v; whose optimal affectation Ropr is the minimal among all the other
possible paths in G.

3 Minimize Switches in Paths

The goal of this section is to provide a greedy algorithm able to compute an optimal affectation H of a
given path P. The obtained result, will then be extended to general graphs using the XXX matrix.

3.1 Procedure

This problem can be solved through a greedy strategy: taking a path P and a coloring function F, we
must delay a color switch as much as possible. At the end we will have selected the biggest I € [1, k]
such that the edges (ey,...,e;) have at least one color in common. We repeat this procedure from the
edge e;41 until reaching the end of our path. An implementation of this algorithm can be found in
Algorithm 1.

3.2 Proof

Let R = (c1,...,ck) be a solution returned by our algorithm, we can easily prove by induction on the
length of the path that the solution is optimal.

For k = 1 we have w(R) = 0 by defintion of the weight function.

Let’s suppose that the solution R is an optimal one for every path of length at least k. We want to
prove that the algorithm is always valid for a path of length k£ + 1, we see that:

o if F(er) N F(ext1) = @ then we are forced to do a color switch, for every affectation of the edge
R = ((e1,...,¢ck)). Since, by ipothesis, the affectation of the edges w(R') is optimal, then it will
remain optimal for any affectation of the edge er+1 and w(R) = w(R’) + 1.

o if F(ek) N F(ek+1) e %]
— if ¢, € F(eg+1) then the algorithm we give to e the same color of e;. This will not increase

the number of color switch which will remain optimal.

— if ¢, € F(eg+1) then the algorithm will force a color switch even if it would have been possible
to give them the same color. Despite this, if we decide to give the same colors to ex and ey
then we are only anticipating a color switch, and in the end w(R) will remain optimal.
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3.3 Time Complexity

We can analyze the time complexity of this procedure from Referencesminpathalgo. We have two loops
of size k (the length of the path). Inside them we make intersection between sets of at most s colors,
then the intersection between two sets of that size will take O(s). Finally, the global time complexity
will be O(2* k x s) = O(k * s).

3.4 An example run
V1 V2 e— U3 V4 V5 e— U6 U7

aq - as - as a4 as Qg

Figure 1: A path example

Let’s take Figure 1, where P = (ay,...,as) and F such that

F(P) = ({cyan,red, green},
{red, green, black},
{cyan,red},

{green},
{cyan,red, black},
{red, black})

The longest subpath of same color, starting from the vertex vy, is P = (a1, a2,a3) such that
R(a) = red for all @ € P;. Then R(ey) = green and R(as) = R(ag) = black. This affectation
H = (red,red,red, green, black, black) has w(R) = 2 and is optimal.

3.5 Exstention on cycles

A cycle in a path whose starting node coincide with its last one. We see that the previous algorithm is
no more effective, since we have to keep into accout the potential color switch between the first and the
last edge of it. Despite this, the procedure proposed in Section 3.1, can be easily modified to provide an
optimal affectation on cycles. Let’s take the path of Figure 1 and imagine that nodes n; and n; coincide.
We now see that the affectation H of Section 3.4 is no more optimal: w(R) = 3, while the affectation
H' = (red,red,red, green,red, red) as a cost of 2. In order to take into account this situation, we assign
to the first P; and the last P, sub-path of edges with same colors a set of common colors. Finally if the
intersection of P; and P, is not empty, we will affect them to a color they share, otherwise, whatever
choice of color for P, and P; will not influence the final cost of the chosen affectation.

Concretely, take the example in Figure 1, then P; = (a1,az2,a3) and P, = (as,a6). Let C7 =
Maep, B(a) and Cy = ,cp, R(a). We know that both C; and Cy are non-empty. Then since C; NCa =
{red} then we can set red to all arcs in P, and P reducing therefore the overall switch number.

4 General Graph

In this section we provide a strategy to compute paths with a fixed number of edges. This strategy
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A. Algorithms

A Algorithms

A.1 Minimize color switch in a path

Algorithm 1: Minimize switches in path

Input: P = (ay,...,ax), F := a path and the color function
Output: H := a path affectation minimizing the color switches
colSet « [F(a;) for ¢ € [1..k]];
for i < 2 to k do
inter < colSet[i — 1] N col Set[i] ; // Delay a color switch
if inter # @ then
| colSet[i] + inter;
end
end
H + [colSetli].choose() for i € [1..k]];
for i = k — 2 downto 1 do
if H[i + 1] € colSet[i| AN H[i] # H[i + 1] then
H[i] < H[i + 1];
; // if possible the R(e;) equals R(e;j+1)
12 end
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13 end
14 return H;
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